Ionic conductivity in Sm-doped ceria from first-principles non-equilibrium molecular dynamics
نویسندگان
چکیده
منابع مشابه
Optimizing ionic conductivity in doped ceria
David Andersson et al. report calculations revealing how doped oxides with cubic fluorite structures become effective ionic conductors. Cubic fluorite structures, such as ceria (CeO2), can become effective ionic conductors when doped with cations of lesser valence than the host cations. Doped ceria thus has potential as an electrolyte for environmentally friendly solid oxide fuel cells. Anderss...
متن کاملOptimization of ionic conductivity in doped ceria.
Oxides with the cubic fluorite structure, e.g., ceria (CeO2), are known to be good solid electrolytes when they are doped with cations of lower valence than the host cations. The high ionic conductivity of doped ceria makes it an attractive electrolyte for solid oxide fuel cells, whose prospects as an environmentally friendly power source are very promising. In these electrolytes, the current i...
متن کاملEnhanced Ionic Conductivity in Heavily Doped Ceria Nanoceramics
CINSO (Centro de INvestigaciones en SOlidos) CITEFA-CONICET Juan Bautista de La Salle 4397, Villa Martelli (B1603ALO) Buenos Aires, Argentina dlamas@citefa. gov.ar;[email protected]
متن کاملAssociation of defects in doped non-stoichiometric ceria from first principles.
We investigate the interaction and distribution of defects in doped non-stoichometric ceria Ce1-xRExO2-x/2-δ (with RE = Lu, Y, Gd, Sm, Nd, and La) by combining DFT+U calculations and Monte Carlo simulations. The concentrated solution of defects in ceria is described by the pair interactions of dopant ions, oxygen vacancies, and small polarons. The calculated interaction energies for polarons an...
متن کاملStructure and Ionic Conductivity of Li2S–P2S5 Glass Electrolytes Simulated with First-Principles Molecular Dynamics
Lithium thiophosphate-based materials are attractive as solid electrolytes in all-solidstate lithium batteries because glass or glass-ceramic structures of these materials are associated with very high conductivity. In this work, we modeled lithium thiophosphates with amorphous structures and investigated Li mobilities by using molecular dynamics calculations based on density functional theory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Solid State Ionics
سال: 2016
ISSN: 0167-2738
DOI: 10.1016/j.ssi.2016.08.011